Rail
Syntax Diagrams For KTEX

L.W.J. Rooijakkers*
University of Nijmegen
The Netherlands
E-mail: 1wj@cs.kun.nl

K. Barthelmann®
University of Mainz
Germany
E-mail: barthel@informatik.uni-mainz.de

May 21, 1998

1 Introduction

The Rail package allows you to include syntax diagrams (also known as railroad
diagrams) in a BTEX document. Such a diagram looks like this:

decl

expression

identifier @ type

(If you like arrow-heads where the lines enter the boxes, a nice feature con-
tributed by J. Olsson, see Section 5.1.) The idea is that any sequence of termi-
nals and nonterminals that can be produced by starting at the left and follow-
ing the lines is a valid sentence of some language. As such, these diagrams are
analogous to BNF with embedded regular expressions for each right-hand side.
Actually, the input language looks like that, except that production rules need
not be named and there is some extra annotation. This document describes
version 1.2 of the Rail package.

2 Usage

To use the Rail package in your BXTEX document you need to write

*original version
tupdate

rules

rule
body 1-5 ’—
o
Figure 1: Input syntax for Rail
\usepackage{rail}

in the document’s preamble. It is usually best to put the rail option last. Then
you can display diagrams in your document body by using

\begin{rail}
rules
\end{rail}

where the syntax of rules is given in Figures 1 and 2, as a railroad diagram.
There are also various options you can set in the preamble.

After running your file.tex through KTEX, a file named file.rai will have
been created, containing all the rules from your document. This file must
then be processed with the rail program to produce file.rao containing I TEX
formatting instructions for each diagram This is done with the command

rail file

On the next BTEX run, the diagrams will be picked up and integrated into the
output. If the diagrams in file .rao are not up-to-date with your IMTEX file, the
rail package will detect this and warn you with

Package rail Warning: Railroad diagram {number} doesn’t match on input line number.
for each diagram, and again at the end of the document with
Package rail Warning: Railroad diagram(s) may have changed. Use ’rail’ and rerun.

The number between braces can be used to find the diagram in file.rai or
file .rao if needed.

3 Input language

As said before, diagrams are displayed by using

body

N
L{ body 3-6 }—@—1 body 576’} A
\—4 body 36 }—@—1 body 575}
y

body & ?

identifier

[N PN Co
I U‘
o
~
<
T
O

ol

)

1

/

2 AN)
Y,

_0 y,

Figure 2: Input syntax for Rail, continued

\begin{rail}
rules
\end{rail}

Refer to Figures 1 and 2 for the syntax of rules. This syntax is rather strict.
Some use of TEX macros within rules is possible, but no nested environments
are allowed. However, defining a macro to save typing is possible.

As seen in the figure, rules consist of zero or more occurrences of a rule,
separated by one or more semicolons. Each rule starts with an optional identifier
giving the name of the rule, followed by the rule body (named rules can be
indexed automatically with the -i option, see below) . This looks pretty much
like BNF, but there are some other operators. Most of these are very similar
to the usual operators of regular expressions, others are for formatting only.
Parentheses () are used for grouping. The italic numbers in the figure are the
priority levels of each alternative. An occurrence like

means that only alternatives with a priority in the range 3-5 are allowed at that
point.
I will illustrate the meaning of the various operators with small examples.

3.1 Atoms

The primitive atoms of the rules are identifiers and various forms of strings.
Identifiers usually signify nonterminals, but they can also be used for terminal
symbols (see \railterm below). Strings delimited by single quotes (?) or double
quotes (") signify terminals. Either kind of string may not contain tabs, newlines
or it’s closing quote. Note that these strings pass through TEX several times,
thus it is unwise to use special characters like {, }, $, %, &, \ in strings. If you
need to use these as symbols, see \railalias below.
Any nonterminal is formatted in a square box, like

nonterminal

while any terminal text is formatted in a box with rounded corners like

Nonterminal identifiers can be annotated by following them with a string en-
closed in [and]. This is described below under the | operator. The fonts
used for typesetting terminals, nonterminals and annotations can be specified,
see \rail...font below.

3.2 Concatenation

The most basic operation is concatenation, for which the operator is invisible.
It works exactly like you think. Entering x y z produces

Related to concatenation is the empty body. It can occur only as operand of |,
* or + or within parentheses. A safe way to write the empty body is (), which
displays as

i.e., nothing. However, the invisible empty body is useful with the repetition
operators, as will be seen below.

A feature related to concatenation is the ability to split long horizontal se-
quences with \\. Asanexample,a b ¢ d e \\ £ g h i jresultsin

2P e a]
e A]

It is possible to create horrible graphic constructions with this operator, for
example \\ | \\:

-

or (\\ * \\) \\:

L

Nevertheless, every input should result in reasonable output.

3.3 Choice

The next operation is choice, for which the operator is |. It has the lowest
priority of all. Entering x | y | z produces

With this operator, parentheses are significant. The expressions (x | y) | z
andx | (y | z) produce

E

and

respectively, which have a different layout (but represent the same language).

Related to choice are priority annonations, of the form [string]. An example
of their use can be seen in the railroad diagram for body. They should only be
used with the top-level choice of a rule body, since otherwise their meaning is
not clear. As an example, [1] x y | [2] z produces

When used with identifiers as in body [2--5] they produce

The string between [and] may not contain tabs, newlines or J. Remember
that you should use -- to produce a number dash (see BTEX: A Document
Preparation System, page 14).

3.4 Repetition

There are also the repetition operators * and +, which are similar to their
regular-expression counterparts. For our purposes, + is the most basic one. The
expression x + y means “one or more times x, separated by y,” and is displayed

The utility of this construction is most obvious with things like

o

The second argument of + can be empty, resulting in the usual meaning of x + as
“one or more times x,” which is displayed as you would expect:

=

The Kleene star operator * is just a shorthand: x * y is identical in meaning
to O | x + y and both display as

Analogously, x * is usually identical to () | x + and displays as

However, it is also possible to transform this to () + x which displays as

This can be made the default behaviour of Rail by using the -a option, either
on the command line or with \railoptions (see below).

3.5 Optional things

Then there is the optionality operator ?. The expression x 7 is actually just a
shorthand for () | x and displays like

3.6 An example

As an example, here is the input for the example diagram on page 1:
\begin{rail}
decl : ’def’ identifier ’=’ (expression + ’;’)

| >type’ identifier ’=’ type

’

\end{rail}

4 Formatting

4.1 Indexing

The Rail package can automatically index named rules. This is specified with
the -1 option of the rail command, which can be given on the command line
or with \railoptions. If enabled, every rule of the form

identifier : body

will generate a A TEX \index command for this identifier, normally in italic font
(this can be changed with \railindexfont).

4.2 Terminal identifiers

It is possible to use identifiers as terminals, with optional user-specified format-
ting. To declare identifiers as terminals, use

\railterm{identifier,identifier,...}
To declare an identifier as a symbol with user-specified formatting, use
\railalias{identifier}{text}

Henceforth, text will be used to format the symbol named identifier. For ex-
ample, the following commands can be used to use special TEX characters as
terminals:

\railalias{lbrace}{\{}

\railalias{rbrace}{\}}

\railalias{dollar}{\$}

\railalias{percent}{\%}

\railalias{ampersand}{\&}

\railalias{backslash}{\char"5C}
\railterm{lbrace,rbrace,dollar,percent,ampersand,backslash}

4.3 Fonts

To format all text, the Rail package uses fonts that are all configurable with the
following commands:

’ Text \ Command \ Default
rule names \railnamefont italic font (\rmfamily\itshape)
nonterminals | \railnontermfont roman font (\rmfamily\upshape)
terminals \railtermfont typewriter font (\ttfamily\upshape)
annotations | \railannotatefont | italic font (\rmfamily\itshape)
index entries | \railindexfont italic font (\rmfamily\itshape)

All of these are used like
\rail...font{font}
where font is a font control sequence like \rmfamily or a type style like \bfseries

(it can actually be any sequence of formatting commands).

4.4 Style parameters

Every diagram is formatted as a ITEX picture environment inside a list
environment. The formatting parameters of the list environment can be set
with

\railparam{decls}

where decls will be used as the decls argument of the 1ist environment. For
example,

\railparam{\addtolength{\itemsep}{lex}}

increases the amount of vertical space between rules.

The picture line thickness is used for all lines in diagrams, so \thinlines,
\thicklines and \linethickness{len} can be used to change it. However,
\unitlength is not used (but see \railunit below).

Some of the formatting within the picture can be changed by modifying
style parameters. If any of these are modified, the command \railinit should
be executed before the next rail environment, otherwise some changes will not
take effect. Otherwise, these parameters are subject to grouping.

\railnamesep The amount of vertical space between the rule name and the
rule body.

\railunit This is the value of \unitlength used within diagrams. Usually set
to 1sp to provide maximal resolution.

\railextra The amount of extra line length added at the left and right ends
of the diagram.

\railboxheight The height of the boxes enclosing terminals and nonterminals.
This value is used as the size argument to \oval. For best results, only
use multiples of 4pt.

\railboxskip The amount of vertical space between the lines of a diagram.
\railboxleft The amount of extra line length added at the left of a box.
\railboxright Idem on the right.

\railovalspace The amount of extra space added to the size of the text to
get the horizontal size of the oval box enclosing it.

\railframespace Idem for square boxes.

\railtextleft The amount of extra line length added at the left of an anno-
tation.

\railtextright Idem at the right.

\railtextup The amount that annotation text is shifted up from the line it is
attached to.

\railjoinsize The radius of the circle segments used to join and split lines.
This value is used as the size argument to \oval. For best results, only
use multiples of 4pt.

4.5 Backward compatibility

The command \railtoken{identifier}{tert} has been retained as an abbrevi-
ation for

\railalias{identifier}{text} \railterm{identifier}

Diagrams are now set flush left by default. If you prefer some indentation,
you can use \railparam, for example

\railparam{\setlength{\leftmargin}{\leftmargini}}
Older Rail files probably need to be processed again.

10

5 The rail program

The full synopsis of the rail program is
rail [+-acdhit] [file]

This will read file.rai and create file.rao if there are no errors. If there are
any errors, file.rao will be removed. If no file argument is given, rail reads
from standard input and writes to standard output.

5.1 Options

Option arguments start with a minus or a plus sign, followed by one or more
option letters. If a minus sign is used, the options are set. With a plus sign,
the options are reset. By default, no options are set. Options can also be set or
reset from the WTEX file (see below). This overrides the corresponding options
setting from the command line. The effect of setting each option is described
below.

-a An alternate layout is used for the * operator with an empty second argu-
ment. Instead of transforming x * into () | x + it is transformed into
O +x

—-c The input is checked for undefined identifiers and unnamed rules. Statistics
about those are printed to the standard output stream.

-d Turns on yacc debugging output. This only works if the program has been
compiled with YYDEBUG defined (which is the default) and your yacc sup-
ports it.

-h Arrow-heads are drawn where lines enter the boxes.

-i Index entries are generated for all named rules, i.e., rules that are of the
form

identifier : body

-t Print the parse tree of a rule body as comments in the .rao file.
Options can be set from a BTEX file by use of
\railoptions{options}

where options is a set of option arguments just like those allowed on the com-
mand line. Options specified this way override those on the command line. The
option settings take effect immediately.

Setting options this way is especially useful for the -a, -c and -t options.
Messages about redefined identifiers are printed according to the setting of -c
in effect at that point, but messages about undefined identifiers and unnamed
rules are printed only if -c is still in effect at the end of the input file.

5.2 Manual page

There may also be an nroff /troff manual page available, which you can obtain
by using man rail. This manual page is distributed with the Rail package as
the file rail.man.

11

5.3 Bugs

Due to the use of a yacc parser, the error messages are not very helpful (essen-
tially only ’syntax error’), but this is difficult to correct.

6 Availability

As of version 1.1, the Rail package is available for Internet anonymous FTP
or WWW from CTAN (Comprehensive TEX Archive Network) hosts in the
directory support/rail.

Please report any bugs or complaints to the second author, K. Barthelmann.
The first author, L.W.J. Rooijakkers, seems to be no longer reachable. Requests
for features might be honored if T have the time (no chance :-)) or need the
feature myself. Have fun!

12

